Spectra from 2.5-15 microm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin.

نویسندگان

  • John A Viator
  • Bernard Choi
  • George M Peavy
  • Sol Kimel
  • J Stuart Nelson
چکیده

Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 microm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, Topicare), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 microm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 microm. Dermis was similar to water, with collagen structure evident in the 6-10 microm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 microm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant mu(ir) is used. In such cases, overestimating mu(ir) will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Measurement of Polarization Properties of Skin using the Ellipsometry Technique

Introduction: The human skin is an active medium from the optical point of view. Therefore, the diagnostic and therapeutic techniques employing light are increasing. Current optical techniques are based on the measurement of the intensity of reflected absorbed or backscattered light from or within skin. Studies have shown that biological tissues, and in particular skin, demonstrate polarization...

متن کامل

Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging.

The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied ...

متن کامل

Mechanical tissue optical clearing devices: enhancement of light penetration in ex vivo porcine skin and adipose tissue.

BACKGROUND AND OBJECTIVE The complex morphological structure of tissue and associated variations in the indices of refraction of components therein, provides a highly scattering medium for visible and near-infrared wavelengths of light. Tissue optical clearing permits delivery of light deeper into tissue, potentially improving the capabilities of various light-based therapeutic techniques, such...

متن کامل

Skin in vivo Dosimetry in Radiotherapy

Introduction: Due to the prevalence of skin problems in patients after radiotherapy, skin dose measuring is importance. Content: Skin in vivo dosimetry means measuring the patient's (or phantom) skin dose during radiotherapy. According to the ICRP 59, the dose at the depth of 0.07 mm is known as a skin dose. The most radiosensitive epidermis cells are located...

متن کامل

Ex vivo histological characterization of a novel ablative fractional resurfacing device.

BACKGROUND AND OBJECTIVES We introduce a novel CO(2) laser device that utilizes ablative fractional resurfacing for deep dermal tissue removal and characterize the resultant thermal effects in skin. STUDY DESIGN/MATERIALS AND METHODS A prototype 30 W, 10.6 microm CO(2) laser was focused to a 1/e(2) spot size of 120 microm and pulse duration up to 0.7 milliseconds to achieve a microarray patte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2003